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SUMMARY

T,

A method of solving minimal cost network flow probleme 1s
descerited. This method beglns with any circulatlion, feacible
or not, ana an arbitrory pricing vector. A labeling procedure
is then usec 1o adjust Yout—ofr—kiiter® arcs, that 1s, arcs
that fall vo satisfy the ontimality properties. It is shown
that the met .oa terminates in a finite number of steps, ana
that in so dolng, the status of no arc of the networl. (as

measured by certain "r1l1ter numbers®) 13 worsened at any step.()
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AN OUT-OF-ZXILTER METHOD FOR [INIMAL

COST FLOJ PROBLEMSY

D. R. Fulkerson

1. Introduction In thic paper 1 wethod of uolving

minlimel cost networs flow »oroblems is described and shown to
have 4 certain desiruble monotone tehavior. The method begins
wit® an arbiirary flow, feacihle or not, together with an
crblitrary pricing vector, and then uses & labeling procedure
to adjust an zrc of the networl: that falls to satisfy the
avoronriate optimallty orovpertlec.

Tc nrecent the pasiec notions underlying the method, let

us consider, for a moment, a general linear program of the

form
(1 1Y) ‘il 247y by (1 =1, , m)
(1‘?) [<\-<u (J"-:'0)n)
A =b s =

n
(1.3) minimize % ¢, x,.

=1
Here the R bi’ lj, ud, ¢, are given. Now suppose that
X o= (xl, 5B g xn) 1c 2 veetor satisfying (1.1) and (1.2),

that 18, x 15 fe.sible, and that there 1s a ducl (or pricing)

*Thls research was supported in part by the Pacific Lighting

Systemn,
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vector T = (vl, Qv Ep vm) such that the 2mnlications

m

(1.4) cy + 1:1Wia13 >0 —> Xy = ﬁj

a. . 1) J— L =
T2y < S

(1.5) cy +

nold for all j. Then it follows tnat x 1:c & minimlzing solutlon,
and thus (1.4), (1.58) might be termec¢ ovtimality nroperties.

For a glven x satlsfying (1.1) and for any w, the following
cace classiflcation for the J=th component of the vrogram is

exclucive and exhaustive:

(a) ey + b2 Tydy > 0, 2y £J
() ¢, i Tyags = 0, Zj < X, < u,
(vv) e, + i Ty { 0, TR
(al) e, ; T4y g >0, Y < £J
(31) e, i S g < 2,
(7)) ey I <o, xS uy
(a,) ¢y ~ ; Tyey el X, > zj
(2.) e, * i Tyay4 - O % > u,
(v?) ey | ; ydy { 0, g > u,
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If all comronents are 1in one of the states a, 8, %, then x 1is
feouible and ontimal. Je call these the "in-kilter" states, the
others "out—of-!-ilter" stiotes. The algorithia to be presented for
network flow »nrotlemc concentraites on a particular out—of-icilter
comovonent, anu griadually duts it in kilter. It does this in such
& way that 21l in=:iilter comoonents ctay in kilter, whereas any
other out-—of-ltilter comoonent either improves or ctays the

same, 1n 2 sencse made precise in section 2.

Section 2 nrovidecs a description of the special class of
lineur pnrograms to whieh the method apolies, together wlth some
prelininary discuscion. we 2ssune that the glven datz for the
srogram are integers (or, equivalently, rationals). Then the
algorithm, orecented in cection %, worizs with integers throughout.
A oroof that the algorithm terminates in & finite number of steps,
and trat 1In o dolng it possesses the monotone prownerty roughly
described above, 15 cketched in section 4. Some comparicons
Jith other methods for colving ainimal cost flow nroblems are
niade in section 5.

For the purticulur class of nrograms veing consldered, the
azoumption that the initial x satistles (1.1) is unimportant,
cince suchi an ®k ls imipedlately availadle, €.y, ¥ = 0. But
starting with o good guess for x and 17 wlll decrease computation
time. OUne situvation for which the nrecent algorithm is par-
ticularly zaoorovricte would be in solving a sequence of flov
nroblems, where each nroblem of the sequence differs only
slightly from 1ts nredecessor. Then the old optimal x and

coula bLe used to iniltiate the commutation for tne new vroblem.
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ve should lilte to exoress our appreciation to G. B.
Dantzi1g, whose criticism of an earlier version of this paper 1in
which the intiti:l x was assumed feasible, led us to reconsider

the problem from the standpoint of infeasible x.

2. Notatlon, definitions, and protlem description.

~e suppose given a network consisting of nodes 1, 2, ..., n
together with directed ares 1) (from node 1 to node j). Each
arc 12 has assocliated with it three integers: [, (the arc

lower bound), Uy (the arc upper bound or capacity), and

Cy 4 (the arc cost), with 0 2y, guiv,.

It is convenlient to describe the problem in terms of cir-
culations [12], rather than flows from sources to sinks
[7, 8, 9]. By a ecirculation we shall mean a nonnegative
integral vector x = (xij)’ one component for each arc¢ 1J, that

satlsfies the concervation equations

1, «eo, n).

2.1) .*;'(x13 - xji) = 0 (1

If trhe circulation %z also satisfies

’ LS @
(2.2) gij g xij S uij (all ares 1),

we call x a feasible circulation. Wwe shall refer to a part?--

cular component xi] of a circulation as the arc flow x1J or
the flow in arc 1/.

A feasible circulation x that minimizes the cost form
(2.73) S Cyq oXa s

over all feasible circulations 1s optimal. The problem we
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are considering 1s that of constructing an optimal circulation.
Of course feasible circulations may not exist, in which case
e sant to discover this fact. It 13 lmown [12] that a neces—
cary and sufficlient condition for the existence of a feasible

circulation 1s tiiat the 1inegualltles

(2.4) = R
11n1.13211nr.~’i
Jin ¥ JinkL

hold for all subcets L of nodes. lere Y denotes the complement
of L. The conditions (2.4) are easily shown to be necessary;
thelr cufficiency can be proved in various ways, for example,
ucing the max flow min cut theorem {7, §] or the =upply-
.emand theorem [11].
let 7 = (wi) be a vector of integers, one component for

eixzch node 1. «e call 7 a nricing vector, and refer to its

comoonents as node orices. Optimality properties for the

nroblem are that the implications

1
L8

2.5 -
(2.5) Cyq t Ty = T, >0 —> Xy, 14

2 58 — 4 =
(n.6) ey Ty — 7y < 0 —> Xpq = Wy,

lhold for all ares 13J. 7hat is, 1f x'is a fezslble circulation,
and 1f there 15 a vricing vector T such that (2.%5), (2.6)
hold, then x 1¢ optimal. e shall shorten the notation by

setting
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For a given clirculation x and pricing veetor w, an arc

1J 1= in 'ust one of the following states:
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We =av that an are 1 i3 1n kilter 17 1t 1= 1in one of +the

states a, o, W otherwice the darc 13 out of kilter. Thus to

solve the probiem, we need to get all arcs in !“ilter.
#1:°h oach state that an are 1j can be in, Wwe shall associate

2 nonnegative integer, called tre .silter number of the arc in

the miven state. An in—klilter are nas <ilter number O; the
arc xilter numbers corresponding to out-of-liilter states are

listed telow:

(ay) £y, — x, .
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:
(5)) 4. - x,

(7;) Fiﬁ(ﬁij - ui:)
(aﬁ) ?in(ki - lif)
(B2) x4, =y

Tous out—of-lil%er aracs have cositive li(1lter numbers. The
1lter numbers for states @, 51, 5?, Y, measure infeusibili:y
for the are flow x,., wnile the “ilter numbers for states
Y,» @, 8re a tieasure =i the degree to which the optimality
rronerties (2.5), (2.6) rfail to be satisfied.
Thie algorithn cvated in the following section has the

nrovert; that all aprc ilter numbers are monotone nonincreasing

tr
)
1

O
1

bode

onne Howaver, steps can occur that

\J
v
-
(&)
.
-
*
o
3
3
o
S
b
o)
p—
('S
.
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-+
«

2 the proof of

rrainstion comewhart.,

1
3

@ need a few other notlions before stating the algorithm,
vhe main one being that of a path from some node to another in
i

a network. let 1 D9 eeey 1 te a sequence of distinct

g m

nodes of a networl: such that either 1,1, ., or 1, .1,

is an are, ¥ =1, oo, m = 1. Picking out, for each k, one cf
these two nossibilities, we call the resulting sequence of
nodes and ares a path from 1, to 1 . Arcs 1.1, 4 that velong

to the path are forward arcs of the path; arecs 1y+11k that

celong to the path are preverse arcc of the path. If we alter
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the definition of a path by stimulating that 11 ; 1", we
i

call the resulting sequence of nodes and arcs a cyele.

2. An out=of=kilter algorithm. The algorithm of this

section uses a modified labeling procedure (B, d] as its

basi¢c routine. In general, the labeling procedure is s

seareh for a path (having zertain desired properties) from
sore node t5 anothier. ae start labeling from a given node,
callea the origin, attempting to reach some other given node,
called the terminal. To initiate the modified procedure, we
assign the lavel [0, @] to the origin; the following labeling

ruied are then applied:

(2.1) If node 1 13 lateled

-}

T
=
[

unlabeled, and if 17 1s an aprec cuch that either

L]
(3.) ka5 2y Ry 8 tiel
- .3 4 .
() .. ¢ 0, % < H
it = "% 1 i
then node | recelves the label |l , €,1, where

= 'll.'.<"’, Li - xi-,) 1n case (.l), 5 = rnih(':‘i, uiﬂ - xi")

{2.2) I? node 1 1s liteled -y "~;]: node | 1s unlabeled,

and 1€ ‘1 1= ar arc ich that aither
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i

(b) 3:1 {0, x 51

then node | receivec the label [17, ij]’ where

€, = nin(ei, Xy

< \

- ‘Ji) in case (:),
€, = min(eg, x,, = uJi) in case (b).
Here = is a clrculation and w a prieing vector.
Tre leobveling procedure terminates in one of two ways,

called brealrthrouzh and nonbreakthrough, resnectively: either

the terminal recelves a label, or no more labels can be
aselgned and the terminal has not been labeled.

If breatthrough occurs, a path from origin to terminal
can ve locatad by bvacitracsing from the terminal, using the
first ember:c of the label pairs. If, in this backtracking,
o node J 1s reached thzat carries the label [jf, cj]. then 1}
is a forward are of the path from origin to terninal; if J 1s
labeled [17, €], then j1 13 a reversc arc of the path. Thus
forward arcs of the path satisfy elther {3.la) or (3.1b),
whereas reverse arcs of the path satisfy (3.2a) or (3.2v).

If nonbreakthroug) results, we let L and T denote the
sets of laveled and unlabeléd nodes prespectively, and define

two subsets of arcs:

(3.2) Cll = {}Jli inkl, 1 L, Elj >, X4 < uii}

(3.3) Qa, 5{51!1 inL, J1n L, 5, <0, x,y 2 3“}.



P-1825
10

We then define

(3.5) B, = min (e, ,)
L upe
(3.6) By = min (- EJI)
7 J1 in 02
(3.7) 5 = min(&l, 52).

Here 5, (1 =1, 2) 1= a positive integer or oo according as
A, 1s nonempty or empiy. :

The complete algorithm now runs ac follows. Start the
corputation with any circulation x and any pricing vector .
Next lcocate an out-—of-l:ilter arc st and go on to the appro—

prilate case below:

(¢]

(01) Tét 28, Roy { 8,4+ The origin for labeling
ig t, the terminal s. If brealkthrough re—

sults, add € = min(e_, ‘st - ) to the

Xet
flow in all forward arcs of the path from

t to 5, subtract ¢ from the flow in all

reverse arcs, and add € to s If non-—
treaktirough results, add 5 defined in (3.7)
to all =, for i in L.

(Bl) or (71) Est =0, xst < ‘St' or Est < 0,
x,. { ug,. Same as (), except
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8 min(cr, ugy — xst)'
(02) or (Lg) ot 7 0, Yoy ‘st’ or ¢, = o,
Xy ) u,. . The origin for labeling 13 s,
the terminal t. If breakthrough results,
add - - min(ct, Xaa = ‘st) to tne flow in
211 “aprward arcs of the patt from s to ¢,
subtract ¢ from the flow In 8ll reverse
arce, and subtract e from x_ .. If nonbreak-
through result:, add 6 defined in (3.7) to
all 7, for i in L.
(v-) ¢ N0, x, oou .. S3ame as (02) or (62),
excent € - min(ct, Xy = ust)'
Tre lubelinpg orocess 15 repeated for the arc st until
eftier 0t 1¢ In “ilter, or until a nonbreal through occurs
)
for wilc: tie node vrice change 5 = oo. In the latter case,

stop. (There %c¢ no :easible circulation). In the former

case, locate another out-of—c¢ilter arc and continue.

4. Terminatlon and the monotone property. Suppose that

arc st 15 out of IZilter, say 1In state Q- The origin for

labeling 1c t, tie termdnal s. The arc st cuannot be used to

-

lavel 5 directly, since neither (3.7a) nor (3.2b) is applicable.
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Consequently, if brealithrough occurs, the resulting path from
t to s, together with the arc st, 1s a e¢ycle. Then the flow
changes that are made on arcs of this cyele again rield a
circulation. Moreover, the labeling rules have been selected
in such a way that kilter numbers for arcs of this cyecle do
not increase. and at least one, namely, for arc st, decreases.
Kilter numbers for arcs not in the cycle of course don't
change.

Similar remar!:s apply if st i1s In one of the other out-
of-i:ilter states.

We summarize tne cossible effects of a brealsthrough on an
arc i} in the dlagram below, whileh chows the state transitions
that may occur followlng breakthrough. If a transition is
pcssible, the number recorded begside the corresnsonding arrcw
reovresents the change in kilter number. (The cubseripts 1,

are omitted in the uia#ran.)

o
)
L
4
M
NV
; ()
o
|
o
TND
3
‘!\

O 2 —< Q C or ~—¢
a ¥ u=x T JQ/ xX=2 3
2 it i 1
0 or —e 0 0 or ce
e - : ce { ’ \L
:_‘Q’ > 7}4 o f}

Brea! througli Diagram
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Verification o the breakthrough diagram is straightforward.
For examrle, suppcse arc 1j is in state a,, with Eij D> Dy
Xy 5 > ‘13’ and kilter number Eij(xij - zij) > 0. If 1) is not
an arc of the cycle of flow changes, then 1] remains in state
@, with zero change in kilter number. If the flow in arc i}J
has changed as a result of the brealsthrough, then either 1j 1is
the arc st or, by the labeling rules (3.1), (3.2), 1] 1s a
reverse arc of the path from origin to terminal. Specifically,
1 was labeled from j using (3.2a). In either case, Xy 4 de-
creases by the positive integer ¢ Xy 5 = 844» the new state
for 1j 1is a, or a, and hence the !tilter number for 1j has

decreaced by Ei € , 0. The rest of the dlagram may be

J
verified similarly.

The state transitions and changes in kilter number that
may occur following a nonbreakthrough with 6 { o are indicated
in ‘he followirg dlagram. (Again the subscripts 1] are

omitted.)
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0 or —6(x — 8) é%L ;L\
a a a <__
. ~ S
X—u
5 ( x— ol |o 0
N ’
..J(( = U‘)g J \J/ l_-(- X )
=Gl = — 77N -C(X - 1
Yo 0 0
32 a\"’ ‘/3&/(‘)
0 ol [o : i
‘rb(x-#
R J

=3 s CV). Yo @
%Tf 0 0 or %%2 - u)

Nonbreakthrough dlagramn

Again we omit a detailed verification, but consider, for
example, an arc 1! in state v,, so that Eij < o, X, g £ Uy g
having kilter number E'U(xiJ - uij) > O before the node price
change is made. If both i and J are in L or both in L, then
Eij remains the same after the node price change, and conse-—
quently 1! stays in state 7, with no change in «ilter number.
de cannot have i in L, j in T (labeling rule (3.1b)), and hence
the remaining possibility i3 1 in L, J in L. Then Eij is
increased by 6 » O. Consequently the arc 1] either remains in
state v,, {ar 5 ¢ -'Eij), goes into state B (if 6 = _'Eij and
X3 2 ‘15)’ into state B, (1f 5 = -EAJ and Xy 4 % ‘ij)’ or into
state @, (1f & o _EIJ and %44 < tij)’ and the corresponding
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ehianres in “llter numbter are recspectively €(xij - uil) < 0,

C (v - 1 / .__ - | -— )
(x., Jij) L0, 4y, Xy 6(xU Jij) o,

il

ﬂiﬁ - Ay Eij(xi* - uii) ¢ 0. (The remaining logical poasibi-
L 3 I~ v =

11ty 5 > “Cye Xy p ‘1; cannot occur, since 1if Xy 4 ) zij’ then

13 ic Jﬁ(}z define¢ by (3.4), and hence © -Eij.)

I+ follows fromr the breawthrough and nonbreakthrough
dlarrera that llter numbers are morniotone nonincreasing
tnrougnout the comdutation. HMoreover, if oreakthrough occurs,
at least one arc ilter numover decreaces. Thus to prove that
the alroritnm terminates, it cuffices to show that an infinite
sequence of zuccecsive nonbreilkthroughs, each with § € o, 1s
Imprnesible. To siiow this, let us suppose thuzt a labeling
resulting 1In nonbrealthrough with r < o has occurred, and
Jet L, I denote the labeled and unlzpeled sets of nodes. After

changing node prices, the new ¢ vector, which we denote by

1

—

¢ , has components given in terms of the old by

¢,.—% for1inlL, Jink¥
-—’ -
(h.1) ¢ 4, = cy # for i ink, s inlL
Lgi, otherwise.

If thoe arc st 1= utill out of -1lter, then the origin 15 the
came for the next laveling, and it followz from (4.1) and the
lupeling rules that every node of L may again be labeled.

Thvs 17 Lice new labeling agalin results in nonbreaxthrough
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' 1 1 1
with labeled set L , we have L& L . Let(]1,<72 denote the
o
new sets defined in terms of L , ¢ (and x) bv (3.3), (».4),

] 4
and suppose L = L . Tnhen, “rom (4.1) we have Ay l

17
a; G G%, and at least one of these inclusions 15 proper Ly
(3.5), (3.6), (3.7). Hence the new labeling elther assigns a
lacel to at least one more node, or failing this, an arec 1s
removed from one of the sets 11 or 12. It follows that, after
finitely manv nonbrealthroughs with 5 ( ®, we either get the
arc st in !zilter, obtain a breualcthrough, or obtaln a nonbreal—
through with 6 = .

If a nonbreal-through with 5 00 occurs, then tnere 1s
no feasible circulation. For if # = @, it follows from (3.%),

(3.4) and the labeling rules (3.1), (3.2) that x for

s
1 Pn L, §:4n L, and X 1y < ij for 4 inn L, j in L. MNoreover,

for the arc st, either t 15 in L, 3 In L with <, { ¢ or 5 1sa

"SI SR

in L, t 1n T with x (This 1c immediate for cases

st Ygp-
ay, Bys B., ¥, of the alporitnm, and follows from (3.3) and
the assumption 5 - oo for -ase c,., fror (ﬁ.h) and the assumntion

£ - oo for case 71.) Herce, sumiing tre equations (2.1) over

1 In L znd notlng cancellations, we obtain in all cuces

0 = 5 (%, = X44) B (v, — £,.).
finy Ty TN
Jin T Tt

Bt this violates tne feasionility condition (2.4). Thus

b w Impllez there 1 no feasible circulation.
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To sum up, the algorithm terminates after finitely many
apnlications of the labeling procedure, either with all arcs
in kilter (in which cace the feasible circulation is optimal),
or with the conclusion that there 1s no feasible circulation.
Moreover, all arc t1lter numbers are monotone nonincreasing
throughout the computatian.

It 1s worthwhile to note the simplification that occurs
if the method of the preceding section 1s initiuted with a
feasible circulation. The states a5, Bl’ 62, v, are then empty
to hegin with, and consequently remain empty throughout the
computation. Hence at each nonbreakthrough (as well as each
hrealzthrough), the kilter number for at least one arc, namely
st, decreases by a positive integer. In many minimal cost flow
rroblems, a starting feasible circulaztion is readily at hand.
For example, in the Hitchcock problem [1, 2, 3, 4] or the

assignment problem [5, 6, 10], suech 1s the case.

5. Comparison with other methods. The method of section

2 is a generalization of the method of [9] for solving minimal
cost flow problems, which in itself generalizes the methods

of [5, 6, 8, 10] for solving Hitchcock and assignment oroblems.
in [@] the fundamental problem was that of finding a maximal
feasible flow from source node 1 tov 3ink node n that minimizes
cost over all such flows. (Aleso the lower bounds were assumed
zero on all arcs. Thie 1s not really a restriction, since a
chenge of variables will accomplish this, if desired.) If we

add to the network the specizl arec nl with znl = 0, U, = 18]%
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¢cq=-C (U and C lcrge), and corsider feicible circulations
in the enlarped networi, then the method of section 3 is
anplicable to such provlems. Or if it is desired to find an
ontimal flow from 1 to n of given value v = ?(xlJ - le) in
the origincl network, we can add the arc nl with znl =u. g =V,
cnl = 0, in order to casct the problem in circulation form.

The method of [0] begins witnh the zero flow from cource 1
to sinz n (which satisfies the bounds on arc flows because
lo..r bounds are zero), and all node pricec zero. It was a2lso
assumed that the gilven arc costs are nonnegative. Equivalently,

if we talte £ = 0, u, = Uy ¢,y == C and begin the algorithm

nl
of section 3 with the zero clirculation and all node vricec

zero, then tne cpeclal are nl is the only out—-of-zilter src

(1t 1= in state 71), énd hence 1t remainc the only out—of-izilter
arc throughout the computation. Then the method of section 7
reduces to that of [9].

It 1= also informative to note some of the major contrasts
between this method &nd the simplex method I}] for solving such
protlems. First of all, the sinolex method would be done in
two nhaces, the first phase belng ¢ search for a feasible
circulation, the second for an optimal circulation. (Through-—
out both of thece phases, the simplex method would work with
basie solutions, a concept that plays no role in this method.)
i‘ere we hzve combined the twe phaces. Ignoring this difference,

however, and ascurning that both methods start with a leasidle

circulation, the main contract, upart from mechanicc of operation,
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apoears to lle in the fact that, for the gimplex method, the
%ilter numbers are nct monotone. For example, arcs that wvere

In kilter &t come stage of the simplex ccmputation can go out

of killter at later stagec.
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